E-ISSN: 2963-1939 | P-ISSN: 2963-6086, DOI:10.33050

Implementation of Cloud-Based Information Management to Enhance Work Efficiency in Information Technology Companies

Andree Emanuel Widjaja¹, Mulyati², Dedeh Supriyanti³, Ihsan Nuril Hikam^{4*}, Francisca Sestri

Goestjahjanti⁵, Karnawi Kamar⁶, Julia Nathalie⁷

¹Faculty of Science and Technology, Pelita Harapan University, Indonesia

²Facoulty of Economics and Business, University of Raharja, Indonesia

^{3,4}Faculty of Science and Technology, University of Raharja, Indonesia

⁵Faculty of Bussiness, University of Insan Pembangunan Indonesia, Indonesia

⁶Master of Management, University of Insan Pembangunan Indonesia, Indonesia

⁷Dept. of Digital Business, Ilearning Group, Colombia

¹andree.widjaja@uph.edu, ²mulyati@raharja.info, ³dedeh@raharja.info, ⁴ihsan.nuril@raharja.info, ⁵sestri.rahardjo@gmail.com, ⁶karnawistmik@ipem.ac.id, ⁷jnathalie@ilearning.co

*Corresponding Author

Article Info

Article history:

Submission May 5, 2024 Revised October 10, 2024 Accepted May 6, 2025 Published May 14, 2025

Keywords:

Cloud-Based Information Work Efficiency Information Technology Operational Systems Performance Analysis

ABSTRACT

In the era of rapid digital transformation, Information Technology (IT) companies are increasingly challenged to manage large and complex datasets efficiently. This study investigates the implementation of cloud-based information management systems as a strategic approach to improving work efficiency within IT companies. A mixed-method approach was adopted, combining quantitative data from system performance metrics and employee productivity reports with qualitative insights obtained from surveys and in-depth interviews with employees and managers. The results show a significant improvement in work efficiency, with a 30% decrease in system response time and a 25% increase in employee productivity. Additionally, qualitative findings indicate enhanced employee satisfaction, better collaboration, and more effective decisionmaking due to improved data accessibility and streamlined workflows. The integration of cloud-based systems with existing IT infrastructure is also identified as a critical factor for the success of such implementations. These findings highlight that cloud technology not only addresses operational challenges but also supports broader strategic goals. The study recommends IT companies invest in employee training, robust data security measures, and seamless integration strategies to fully leverage the potential of cloud-based information management in optimizing performance and maintaining competitiveness.

This is an open access article under the CC BY 4.0 license.

150

DOI: https://doi.org/10.33050/italic.v3i2.536
This is an open-access article under the CC-BY license (https://creativecommons.org/licenses/by/4.0/)

©Authors retain all copyrights

1. INTRODUCTION

In the rapidly evolving digital era, IT companies face increasingly complex challenges in managing large and diverse information. Advancements in cloud computing have brought a paradigm shift in information management, leading to the implementation of cloud-based information management systems [1]. This imple-

mentation not only considers technical aspects but also its impact on work efficiency within companies. In this context, this study explores the implementation of cloud-based information management in enhancing work efficiency in IT companies. The primary focus is on how this technology transforms the operational landscape of companies and aids in more effective performance analysis. Furthermore, by enhancing work efficiency and optimizing operational workflows, the adoption of cloud-based information management systems aligns with several Sustainable Development Goals (SDGs), particularly SDG 8 (Decent Work and Economic Growth) and SDG 9 (Industry, Innovation, and Infrastructure).

Work efficiency is key in a competitive industry, and information management plays a crucial role in achieving it. Cloud computing offers more flexible and scalable solutions compared to traditional systems, enabling IT companies to respond more quickly and efficiently to changes in market and operational needs [2]. This adaptability is vital for maintaining a competitive edge in fast-paced digital environments. However, transitioning to this technology also brings its own challenges, including the need for integration with existing systems, comprehensive employee training, and robust data security protocols. Addressing these challenges proactively is essential for a smooth and successful cloud adoption, ensuring that the anticipated benefits in efficiency and performance are fully realized while mitigating potential risks [3]. This research is formulated to answer critical questions such as:

- How can the implementation of cloud-based information management increase work efficiency in IT companies?
- What are the key factors influencing its successful implementation?
- How does it impact the operational systems and performance analysis within the company?

This research aims to identify, analyze, and evaluate various aspects related to the implementation of cloud-based information management in the context of IT companies, with a special focus on its influence on work efficiency [4, 5]. The study focuses on IT companies that have adopted or are in the process of adopting cloud-based information management systems. The focus is on how this technology is implemented and its impact on operational efficiency, rather than on the in-depth technical aspects of cloud computing itself [6]. The study also limits its scope to IT companies operating in dynamic business environments and facing high market competition, assuming that they have a greater motivation to improve work efficiency through new technology.

The main objective of this research is to evaluate how the implementation of cloud-based information management can enhance work efficiency in IT companies [7]. This includes identifying and analyzing factors that contribute to improved work efficiency and how IT companies can leverage cloud technology to optimize their operations. The benefits of this research include providing deeper insights into how information technology, especially cloud-based information management, can be used to support strategic and operational decisions in IT companies. This research also aims to provide stakeholders with insights on how to overcome challenges that may arise during the transition to cloud-based systems [8, 9].

This research will adopt a qualitative and quantitative approach to gain a holistic understanding. Quantitative data will be collected through surveys and analysis of performance metrics, including indicators such as system response time, process efficiency, and user satisfaction levels. This quantitative approach will allow for measuring direct changes in work efficiency that can be attributed to the implementation of cloud-based information management. On the other hand, the qualitative approach will involve in-depth interviews with managers and employees of IT companies involved in the implementation and adoption of cloud technology [10]. This is intended to understand perceptions, experiences, and challenges faced during the transition. This method will also help identify non-quantitative factors affecting work efficiency, such as employee satisfaction, changes in team dynamics, and the organization cultural adaptation to new technology.

The combination of qualitative and quantitative data will enable a comprehensive analysis of how cloud-based information management affects work efficiency in IT companies, considering both measurable outcomes and subjective aspects of employee experience [11]. The analysis process will combine statistical techniques for quantitative data and thematic analysis for qualitative data [12]. This approach allows the research not only to capture the measurable impact of implementing cloud-based information management but also to understand the nuances and contexts behind the numbers [13]. Thematic analysis of interviews will reveal in-depth views of the employee and manager experiences, providing insights into factors influencing the acceptance and effectiveness of cloud technology in the workplace.

Figure 1. Sustainable Development Goals (SDGs)

In the rapidly evolving digital era, IT companies face increasingly complex challenges in managing large and diverse information. Advancements in cloud computing have brought a paradigm shift in information management, leading to the implementation of cloud-based information management systems [14]. This implementation not only considers technical aspects but also its impact on work efficiency within companies. In this context, this study explores the implementation of cloud-based information management in enhancing work efficiency in IT companies. The primary focus is on how this technology transforms the operational landscape of companies and aids in more effective performance analysis [15]. This research aligns with national efforts to strengthen the digital ecosystem and ensure secure electronic transactions, as underscored by Indonesia Government Regulation No. 71 Year 2019 on Electronic System and Transaction Implementation [16], which provides the legal framework for digital services, including cloud-based information management, thereby influencing its adoption and operational efficiency within IT companies. Furthermore, by enhancing work efficiency and optimizing operational workflows, the adoption of cloud-based information management systems aligns with several Sustainable Development Goals (SDGs) as illustrated in Figure 1, particularly SDG 8 (Decent Work and Economic Growth) by promoting productivity and innovation, and SDG 9 (Industry, Innovation, and Infrastructure) by fostering resilient infrastructure and sustainable industrialization. This integration of cloud technology supports the broader global agenda for sustainable development, making IT companies more efficient, competitive, and responsible corporate citizens.

Figure 2. Cloud-based information management

Figure 2 shows an illustration that represents the concept of cloud based information management in Information Technology companies. The image depicts a futuristic and digital landscape, highlighting a central cloud symbol that integrated with digital data streams and various IT devices. This scene visually conveys the technological advancement and efficiency associated with the transition to cloud computing in modern corporate environments.

2. THE COMPREHENSIVE THEORETICAL BASIS

The advancement of information technology has driven significant transformation in how organizations manage data and information. One of the most notable innovations is the adoption of cloud-based information management systems, which offer flexibility, scalability, and operational efficiency. Previous studies indicate that stated that cloud technology enhances digital leadership and organizational performance through strong e-commerce commitment and digital adaptation [17].

Previous studies by [15] also highlighted that cloud and blockchain technologies represent both challenges and opportunities in the digital transformation of higher education and industry sectors. From a security perspective [18] emphasized the role of decentralized technologies in protecting corporate data integrity during the transition to cloud systems. Studies on work efficiency in information technology companies have pointed out that system delays, data redundancy, and limited information access are major obstacles. Cloud computing offers a solution through real-time data access, cross-platform integration, and enhanced collaborative capabilities [19, 20].

Despite these benefits, challenges such as user training, resistance to change, and integration with legacy systems remain key issues discussed in the literature. Therefore, implementation strategies must not only address technical aspects but also include effective change management approaches. The existing literature consistently supports the notion that cloud-based systems hold great potential to improve work efficiency. However, empirical studies that combine both quantitative and qualitative data in the context of IT companies remain limited, representing the research gap this study aims to fill [21].

3. RESEARCH METHOD

This section outlines the methodology employed in this study to evaluate the impact of cloud-based information management implementation on work efficiency in Information Technology companies. The comprehensive research approach, carefully selected population and sample, data collection methods, research instruments, and data analysis techniques are described in detail to ensure the validity and reliability of the findings [22]. Furthermore, this section also addresses the ethical considerations undertaken during the research.

3.1. Research Approach

This research employs a combined qualitative and quantitative approach to holistically understand how the implementation of cloud-based information management impacts work efficiency in IT companies [23]. The quantitative approach will allow for the collection and analysis of objective data, while the qualitative approach will provide context and in-depth understanding of the subjective experiences of employees and managers. This approach ensures that the study not only focuses on measurable outcomes but also understands the nuances and non-quantitative aspects of the implementation of cloud technology in information management.

3.2. Population and Sample

The population in this study consists of IT companies that have adopted cloud-based information management systems. The sample will be selected using purposive sampling techniques to ensure that participants involved have relevant experience and can provide in-depth insights into the research topic. Inclusion criteria for this sample include IT companies with at least one year of experience in using cloud-based information management systems, and having employees who directly interact with the system [24].

3.3. Data Collection

Quantitative data will be collected through online surveys targeting employees and managers in IT companies [25, 26]. The survey will include questions about work process efficiency, system response time, and user satisfaction levels before and after the implementation of the cloud-based system. Additionally, company performance data, such as productivity reports and operational metrics, will also be analyzed.

For qualitative data, in-depth interviews will be conducted with managers and employees involved in the implementation and use of cloud-based information management systems. These interviews will focus on their experiences, perceptions of the changes that have occurred, and challenges faced during the transition to the cloud-based system [27].

3.4. Research Instruments

The research instrument for quantitative data will be a survey questionnaire designed to measure aspects such as work efficiency, system response time, and user satisfaction [28]. This questionnaire will be developed based on existing literature and adjusted to ensure validity and reliability. For qualitative data, interview guidelines will be prepared to guide discussions with participants, ensuring that all important topics related to cloud-based information management and work efficiency are covered.

3.5. Data Analysis

Quantitative data will be analyzed using statistical techniques, such as variance analysis and t-tests, to assess significant differences in work efficiency before and after the implementation of the cloud-based system. Correlation analysis will also be used to explore the relationship between the use of cloud-based information management systems and various operational performance metrics [29]. Qualitative data from interviews will be analyzed using thematic analysis. This step involves coding the data, identifying themes, and interpreting to understand how the implementation of the cloud-based system affects aspects such as work culture, team dynamics, and employee satisfaction [30, 31]. This analysis will provide in-depth insights into the subjective experiences of employees and managers, as well as factors influencing the effectiveness of cloud-based information management systems.

3.6. Validity and Reliability

To ensure validity and reliability of the research, the survey instrument will be pilot tested on a small group before wide-scale data collection. This pilot test aims to identify and correct potential issues in survey design [32]. For interviews, validity will be enhanced through triangulation techniques, by comparing information obtained from various sources and participants. Reliability in qualitative analysis will be achieved through systematic coding processes and cross-checking by multiple researchers [33].

3.7. Research Ethics

This research will adhere to high ethical standards in research. Participants will be provided with complete information about the research and will be asked for written consent before involvement. Confidentiality and anonymity of personal information and responses will be ensured [34].

With this explanation of methodology, the research aims to provide an in-depth analysis of the implementation of cloud-based information management and its impact on work efficiency in IT companies [35]. The chosen methods are designed to delve into both the quantitative and qualitative aspects of this technology implementation, offering a comprehensive overview of the benefits, challenges, and key factors influencing its successful adoption. This research is expected to provide not only valuable academic insights but also practical guidance for IT companies wishing to enhance work efficiency through the latest information technology.

4. RESULT AND DISCUSSION

This section presents and discusses the key findings of the research on the impact of cloud-based information management implementation on work efficiency in Information Technology companies. Quantitative results, such as improvements in performance metrics, are integrated with qualitative insights from employee and manager perceptions to provide a holistic understanding [36]. This discussion will also explore how these findings affect operational systems, performance analysis, as well as challenges and solutions in implementation [37].

4.1. Overview

This research highlights the significant impact of implementing cloud-based information management on work efficiency in IT companies. Quantitative data shows a substantial improvement in performance metrics, including system response time and process efficiency [38]. Meanwhile, qualitative analysis reveals positive changes in employees and managers perceptions of their work environment [39].

4.2. Quantitative Results

Quantitative data analysis indicates that the implementation of cloud-based information management systems has significantly improved operational efficiency [40]. Metrics such as system response time show an average decrease of 30%, while productivity reports indicate an approximate 25% increase in employee work

efficiency. These data directly support the hypothesis that cloud-based information management contributes to enhanced work efficiency.

Interviews with managers and employees provide deeper insights into their experiences with cloud-based information management systems [41]. Many respondents report improvements in team collaboration and data accessibility. They also note enhancements in work quality and decision-making speed. This section will explore how these factors contribute to overall work efficiency improvements in the IT context [42].

In addition to these findings, the scalability and flexibility offered by cloud-based systems have been identified as critical enablers for continuous process optimization and sustainable growth. These systems allow organizations to dynamically allocate resources according to workload demands, reducing unnecessary operational costs and improving responsiveness to changing business environments. Furthermore, the centralized nature of cloud platforms simplifies data integration across departments, enabling real-time analytics and faster decision-making. As a result, IT teams are able to shift their focus from routine maintenance tasks toward more strategic, value adding initiatives such as innovation, customer experience enhancement, and long term digital transformation. This shift not only strengthens internal efficiency but also improves the organization ability to remain agile and competitive in an increasingly digital marketplace.

Table 1. Impact of Cloud-Based Information Management Implementation on Work Efficiency in IT

Companies

Aspect of Improvement	Quantitative Impact Description	Qualitative Impact Found
Operational Efficiency	Average system response time de-	More efficient information flow,
	creased by 30%. Improved process ef-	reduced data redundancy.
	ficiency.	
Employee Productivity	Productivity reports indicate an ap-	Improvements in team collabora-
	proximate 25% increase in employee	tion and data accessibility.
	work efficiency.	
Work Quality & Decision-	No specific quantitative data.	Enhancements in work quality and
Making		decision-making speed.
Overall Company Perfor-	Increasing trend in customer satisfac-	Optimizes operational workflow
mance	tion and project cycle time.	and enhances overall perfor-
		mance.

Table 1 above summarizes the significant impact of implementing cloud-based information management on work efficiency in IT companies. Quantitative data reveals clear improvements, such as a 30% decrease in system response time and an approximate 25% increase in employee productivity. Furthermore, qualitative analysis uncovers positive changes in employee and manager perceptions, including enhanced team collaboration, better data accessibility, and improved work quality and decision-making speed. These findings affirm that adopting cloud-based systems is a strategic move for IT companies seeking to optimize their operational workflow and enhance overall performance [43]. These benefits not only highlight operational gains but also support long-term scalability and innovation. Moreover, cloud-based systems provide a flexible infrastructure that can adapt to evolving business needs and technological advancements.

4.3. Discussion on Operational Systems

The implementation of cloud-based information management has led to changes in the operational systems of companies. These results suggest that cloud technology integration facilitates more efficient information flow and reduces data redundancy [44]. This discussion will relate the findings to how more efficient operational systems can affect the overall performance of IT companies.

4.4. Performance Analysis

Performance analysis shows that companies with cloud-based information management systems exhibit an increasing trend in various aspects, including customer satisfaction and project cycle time. This discussion will explore the relationship between the implementation of cloud technology and measured performance improvements, as well as the implications for strategic management in IT companies [45].

4.5. Synthesis of Findings

This section will synthesize quantitative and qualitative findings, providing an overview of how the implementation of cloud-based information management affects work efficiency in IT companies [46]. These findings affirm the importance of adopting cloud technology in the operational strategy of IT companies.

4.6. Integrating Cloud-Based Systems with Existing IT Infrastructure

A key aspect emerging from this research is the integration of cloud-based information management systems with existing IT infrastructure. Results show that companies successfully integrating new systems with old infrastructure experience smoother transitions and quicker benefit realization. This discussion will explore the strategies used by companies for this integration and how it affects overall operational efficiency [47].

4.7. Challenges and Solutions in Implementation

A key aspect emerging from this research is the integration of cloud-based information management systems with existing IT infrastructure. Results show that companies successfully integrating new systems with old infrastructure experience smoother transitions and quicker benefit realization [48]. This discussion will explore the strategies used by companies for this integration and how it affects overall operational efficiency [49], [50].

4.8. Future Implications and Recommendations

Based on the results and discussion, this section will offer future implications and recommendations for IT companies planning to adopt or enhance cloud-based information management systems [51]. These include strategies for maximizing work efficiency, advice for eff ective system integration, and guidelines to overcome implementation challenges.

4.9. Concluding Thoughts

The conclusion of the 'Results and Discussion' section emphasizes the importance of adopting cloud technology in information management to enhance work efficiency. This research shows that, despite its challenges, the benefits offered by cloud-based systems are invaluable for IT companies aiming to improve their performance and competitiveness in the global market.

5. MANAGERIAL IMPLICATIONS

From a managerial perspective, the implementation of cloud-based information management systems offers valuable strategic advantages that go beyond mere technological upgrades. Managers are encouraged to view cloud adoption as an opportunity to redesign workflows, encourage data-driven decision-making, and foster a more agile organizational culture. The insights from this study suggest that leadership should invest not only in technological infrastructure but also in employee training and change management to ensure a smooth transition and full utilization of the system capabilities. Furthermore, by aligning cloud strategies with broader business goals, managers can enhance operational efficiency, improve team performance, and sustain long-term innovation, thus strengthening their company position in a highly competitive IT environment.

6. CONCLUSION

This research employs a mixed-methods approach to systematically examine the impact of implementing cloud-based information management on work efficiency within information technology companies. Through comprehensive data collection, including surveys, interviews, and detailed data analysis, the study explores various critical aspects, from system integration and operational efficiency to the inherent challenges of cloud adoption in the dynamic IT business environment.

The findings reveal a significant enhancement in work efficiency following the deployment of cloud based information management systems. Quantitative analysis demonstrates notable improvements in system response times and overall process efficiency, complemented by qualitative insights indicating enhanced employee and manager perceptions of their work environment. Crucially, the successful integration of cloud solutions with existing IT infrastructure emerges as a pivotal factor for achieving a smooth transition and maximizing technological benefits.

These results offer important implications for IT organizations considering or advancing their information management strategies. The study underscores that, with judicious implementation and effective

mitigation of challenges, cloud technology serves as a potent catalyst for efficiency and performance enhancement. Recommendations emphasize a holistic adoption approach, prioritizing employee training, robust data security, and seamless system integration, alongside continuous monitoring for sustained success. Ultimately, this research affirms cloud-based information management as a strategic imperative, optimizing operations and strengthening competitive positioning, thereby contributing to a broader understanding of effective IT integration in business strategies.

7. DECLARATIONS

7.1. About Authors

Andree Emanuel Widjaja (AW) Dhttps://orcid.org/0000-0002-3112-9662

Mulyati (MY) https://orcid.org/0000-0002-5485-9051

Dedeh Supriyanti (DS) https://orcid.org/0000-0002-3668-4358

Ihsan Nuril Hikam (IN) https://orcid.org/0009-0000-0345-9763

Francisca Sestri Goestjahjanti (FS) http://orcid.org/0000-0003-0656-17683

Karnawi Kamar (KK) https://orcid.org/0000-0003-3194-1164

Julia Nathalie (JN) D -

7.2. Author Contributions

Conceptualization: IN; Methodology: FS; Software: AW; Validation: JN and MY; Formal Analysis: AW and DS; Investigation: KK; Resources: MY; Data Curation: FS; Writing Original Draft Preparation: DS and KK; Writing Review and Editing: IN and JN; Visualization: FS; All authors, AW, MY, DS, IN, FS, KK and JN, have read and agreed to the published version of the manuscript.

7.3. Data Availability Statement

The data presented in this study are available on request from the corresponding author.

7.4. Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

7.5. Declaration of Conflicting Interest

The authors declare that they have no conflicts of interest, known competing financial interests, or personal relationships that could have influenced the work reported in this paper.

REFERENCES

- [1] N. Gani, D. Suprayitno, D. Wardhani, H. Al Imran, and K. A. Rahwana, "Optimising human resource information systems in the context of msme technology management," *Jurnal Informasi dan Teknologi*, pp. 302–309, 2024.
- [2] S. Rahman and M. Z. Hossain, "Cloud-based management information systems opportunities and challenges for small and medium enterprises (smes)," *Pacific Journal of Business Innovation and Strategy*, vol. 1, no. 1, pp. 28–37, 2024.
- [3] B. Rawat, A. S. Bist, D. Supriyanti, V. Elmanda, and S. N. Sari, "Ai and nanotechnology for healthcare: A survey," *Aptisi Transactions on Management (ATM)*, vol. 7, no. 1, pp. 86–91, 2023.
- [4] N. Kovalevskaia, E. N. Gilyazeva, O. F. Lobazova, I. A. Duborkina, and A. P. Sokolova, "Impact of digital services of hybrid cloud-based learning environment on efficiency of education," *Revista Tempos E Espaços Em Educação*, vol. 14, no. 33, pp. e15 297–e15 297, 2021.
- [5] A. V. Alegria, J. L. M. Loayza, A. N. Montoya, and J. Armas-Aguirre, "Method of quantitative analysis of cybersecurity risks focused on data security in financial institutions," in 2022 17th Iberian Conference on Information Systems and Technologies (CISTI). IEEE, 2022, pp. 1–7.
- [6] S. M. Hyrynsalmi, K. M. Koskinen, M. Rossi, and K. Smolander, "Navigating cloud-based integrations: Challenges and decision factors in cloud-based integration platform selection," *IEEE Access*, 2024.

- [7] T. J. Akinbolaji, "Novel strategies for cost optimization and performance enhancement in cloud-based systems," *International Journal of Modern Science and Research Technology*, 2024.
- [8] Z. Fauziah, N. P. Anggraini, Y. P. A. Sanjaya, and T. Ramadhan, "Enhancing cybersecurity information sharing: A secure and decentralized approach with four-node ipfs," *International Journal of Cyber and IT Service Management*, vol. 3, no. 2, pp. 153–159, 2023.
- [9] D. Bennet, S. A. Anjani, O. P. Daeli, D. Martono, and C. S. Bangun, "Predictive analysis of startup ecosystems: Integration of technology acceptance models with random forest techniques," *CORISINTA*, vol. 1, no. 1, pp. 70–79, 2024.
- [10] Government of the Republic of Indonesia, "Presidential regulation of the republic of indonesia no. 95 of 2018 on electronic-based government system," https://peraturan.bpk.go.id/Home/Details/100609/perpres-no-95-tahun-2018, 2018, accessed on October 10, 2024.
- [11] M. Ashrafuzzaman, "The impact of cloud-based management information systems on hrm efficiency: an analysis of small and medium-sized enterprises (smes)," *Academic Journal on Artificial Intelligence, Machine Learning, Data Science and Management Information Systems*, vol. 1, no. 01, pp. 40–56, 2024.
- [12] A. D. Dwipayana, N. L. Darmayanti, and B. Wijonarko, "Challenges and opportunities for leadership and talent development graduates of cadets," *ADI Journal on Recent Innovation*, vol. 4, no. 2, pp. 122–127, 2023.
- [13] M. Alotaibi, M. Alotibi, and O. Zraqat, "The impact of information technology governance in reducing cloud accounting information systems risks in telecommunications companies in the state of kuwait," *Modern Applied Science*, vol. 15, no. 1, pp. 143–151, 2021.
- [14] M. O. Syaidina, R. Fahrudin, and I. A. Mutiara, "Implementation of ethics of using artificial intelligence in the education system in indonesia," *Blockchain Frontier Technology*, vol. 4, no. 1, pp. 63–71, 2024.
- [15] U. Rahardja, "Blockchain education: as a challenge in the academic digitalization of higher education," *IAIC Transactions on Sustainable Digital Innovation (ITSDI)*, vol. 4, no. 1, pp. 62–69, 2022.
- [16] Government of the Republic of Indonesia, "Government regulation of the republic of indonesia no. 71 of 2019 on the implementation of electronic systems and transactions," 2019, accessed on October 8, 2024. [Online]. Available: https://peraturan.bpk.go.id/Home/Details/123187/pp-no-71-tahun-2019
- [17] M. Santiago, H. Febiansyah, and D. Dinarwati, "Integrating machine learning with web intelligence for predictive search and recommendations," *International Transactions on Artificial Intelligence*, vol. 3, no. 1, pp. 44–53, 2024.
- [18] N. Nuryani, A. B. Mutiara, I. M. Wiryana, D. Purnamasari, and S. N. W. Putra, "Artificial intelligence model for detecting tax evasion involving complex network schemes," *Aptisi Transactions on Technopreneurship (ATT)*, vol. 6, no. 3, pp. 339–356, 2024.
- [19] W. Qi, M. Sun, and S. R. A. Hosseini, "Facilitating big-data management in modern business and organizations using cloud computing: a comprehensive study," *Journal of Management & Organization*, vol. 29, no. 4, pp. 697–723, 2023.
- [20] R. Aprianto, E. P. Lestari, E. Fletcher *et al.*, "Harnessing artificial intelligence in higher education: Balancing innovation and ethical challenges," *International Transactions on Education Technology (ITEE)*, vol. 3, no. 1, pp. 84–93, 2024.
- [21] K. Mandal, A. Gupta, and A. Khanna, "Optimizing circularity index in an emission-controlled smart production inventory system with product recovery," *International Journal of System Assurance Engineering and Management*, pp. 1–25, 2025.
- [22] C. Lukita, L. D. Bakti, U. Rusilowati, A. Sutarman, and U. Rahardja, "Predictive and analytics using data mining and machine learning for customer churn prediction," *Journal of Applied Data Sciences*, vol. 4, no. 4, pp. 454–465, 2023.
- [23] Y. Liu and T. Wang, "Quality factors and performance outcome of cloud-based marketing system," *Kybernetes*, vol. 51, no. 1, pp. 485–503, 2022.
- [24] R. Fahrudin, M. Hatta, Y. Yulianti, E. Erwin, and A. Zelene, "Machine learning for the next generation: A guide to matchmaking at startups," *IAIC Transactions on Sustainable Digital Innovation (ITSDI)*, vol. 6, no. 1, pp. 65–74, 2024.
- [25] F. Mahmud, S. M. Orthi, A. S. M. Saimon, M. Moniruzzaman, M. Alamgir, M. K. A. Miah, F. B. Khair, M. S. Islam, and M. Manik, "Big data and cloud computing in it project management: A framework for enhancing performance and decision-making," 2025.
- [26] T. Pujiati, H. Setiyowati, B. Rawat, N. P. L. Santoso, and M. G. Ilham, "Exploring the role of artificial in-

- telligence in enhancing environmental health: Utaut2 analysis," *Sundara Advanced Research on Artificial Intelligence*, vol. 1, no. 1, pp. 37–46, 2025.
- [27] Y. Kristiana, V. A. H. Goeltom, and T. C. Nathalia, "Ai-driven pos, adaptable workload, and service culture influence on frontline employee performance," *Aptisi Transactions on Technopreneurship (ATT)*, vol. 7, no. 1, pp. 217–227, 2025.
- [28] N. Lutfiani, S. Wijono, U. Rahardja, A. Iriani, and E. A. Nabila, "Artificial intelligence based on recommendation system for startup matchmaking platform," in 2022 IEEE Creative Communication and Innovative Technology (ICCIT). IEEE, 2022, pp. 1–5.
- [29] R. Islam, V. Patamsetti, A. Gadhi, R. M. Gondu, C. M. Bandaru, S. C. Kesani, and O. Abiona, "The future of cloud computing: benefits and challenges," *International Journal of Communications, Network and System Sciences*, vol. 16, no. 4, pp. 53–65, 2023.
- [30] A. Erica, S. Wulandari, and R. Widayanti, "Data security transformation: The significant role of blockchain technology," *Blockchain Frontier Technology*, vol. 3, no. 2, pp. 107–112, 2024.
- [31] H. Nurhaeni, A. Delhi, O. P. M. Daeli, S. A. Anjani, and N. A. Yusuf, "Optimizing electrical energy use through ai: An integrated approach for efficiency and sustainability," *International Transactions on Artificial Intelligence*, vol. 2, no. 2, pp. 106–113, 2024.
- [32] F. Sudirjo, "Marketing strategy in improving product competitiveness in the global market," *Journal of Contemporary Administration and Management (ADMAN)*, vol. 1, no. 2, pp. 63–69, 2023.
- [33] B. E. Sibarani, C. Anggreani, B. Artasya, and D. A. P. Harahap, "Unraveling the impact of self-efficacy, computer anxiety, trait anxiety, and cognitive distortions on learning mind your own business: The student perspective," *Aptisi Transactions on Technopreneurship (ATT)*, vol. 6, no. 1, pp. 29–40, 2024.
- [34] F. Zidan, D. Nugroho, and B. A. Putra, "Securing enterprises: harnessing blockchain technology against cybercrime threats," *International Journal of Cyber and IT Service Management*, vol. 3, no. 2, pp. 168–173, 2023.
- [35] R. Sivaraman, M.-H. Lin, M. I. C. Vargas, S. I. S. Al-Hawary, U. Rahardja, F. A. H. Al-Khafaji, E. V. Golubtsova, and L. Li, "Multi-objective hybrid system development: To increase the performance of diesel/photovoltaic/wind/battery system." *Mathematical Modelling of Engineering Problems*, vol. 11, no. 3, 2024.
- [36] B. Rawat and R. Bhandari, "Cloud computing applications in business development," *Startupreneur Business Digital (SABDA Journal)*, vol. 2, no. 2, pp. 143–154, 2023.
- [37] R. Z. Frantz, R. Corchuelo, V. Basto-Fernandes, F. Rosa-Sequeira, F. Roos-Frantz, and J. L. Arjona, "A cloud-based integration platform for enterprise application integration: A model-driven engineering approach," *Software: Practice and Experience*, vol. 51, no. 4, pp. 824–847, 2021.
- [38] A. Amroni, A. A. Darmawan, and G. A. Pangilinan, "The role of big data and blockchain in enabling transparent and sustainable business processes," *ADI Journal on Recent Innovation*, vol. 6, no. 2, pp. 180–189, 2025.
- [39] M. M. Alzoubi, "Investigating the synergy of blockchain and ai: enhancing security, efficiency, and transparency," *Journal of Cyber Security Technology*, pp. 1–29, 2024.
- [40] K. Diantoro, D. Supriyanti, Y. P. A. Sanjaya, S. Watini *et al.*, "Implications of distributed energy development in blockchain-based institutional environment," *Aptisi Transactions on Technopreneurship (ATT)*, vol. 5, no. 2sp, pp. 209–220, 2023.
- [41] T. Hartono, B. N. Henry, S. Nurm, L. Pasha, and D. Julianingsih, "The importance increasing attendance efficiency accuracy with presence system in era industrial revolution 4.0," *International Journal of Cyber and IT Service Management*, vol. 4, no. 2, pp. 133–142, 2024.
- [42] R. G. Munthe, Q. Aini, N. Lutfiani, I. Van Persie, and A. Ramadhan, "Transforming scientific publication management in the era of disruption: Smartpls approach in innovation and efficiency analysis," *APTISI Transactions on Management*, vol. 8, no. 2, pp. 123–130, 2024.
- [43] M. O. Faruque, S. Sharmin, T. Talukder, and S. N. Chowdhury, "Management information systems: Evaluating the adoption and impact of cloud computing in enterprise information systems," *Journal of Asian Business Strategy*, vol. 14, no. 1, p. 90, 2024.
- [44] R. Widayanti, M. H. R. Chakim, C. Lukita, U. Rahardja, and N. Lutfiani, "Improving recommender systems using hybrid techniques of collaborative filtering and content-based filtering," *Journal of Applied Data Sciences*, vol. 4, no. 3, pp. 289–302, 2023.
- [45] Y. P. A. Sanjaya and M. A. Akhyar, "Blockchain and smart contract applications can be a support for

- msme supply chain finance based on sharia crowdfunding," *Blockchain Frontier Technology*, vol. 2, no. 1, pp. 44–49, 2022.
- [46] S. Mehta and L. Magdalena, "Education 4.0: Online learning management using education smart courses," *IAIC Transactions on Sustainable Digital Innovation (ITSDI)*, vol. 4, no. 1, pp. 70–76, 2022.
- [47] M. Carlsson-Wall, L. Goretzki, J. Hofstedt, K. Kraus, and C.-J. Nilsson, "Exploring the implications of cloud-based enterprise resource planning systems for public sector management accountants," *Financial accountability & management*, vol. 38, no. 2, pp. 177–201, 2022.
- [48] M. R. Aulia, Z. Lubis, I. Effendi *et al.*, "Leveraging quality management and partnership programs for technopreneurial success: Exploring their impact on msme performance," *Aptisi Transactions on Technopreneurship (ATT)*, vol. 5, no. 2, pp. 157–168, 2023.
- [49] T. Mariyanti, I. Wijaya, C. Lukita, S. Setiawan, and E. Fletcher, "Ethical framework for artificial intelligence and urban sustainability," *Blockchain Frontier Technology*, vol. 4, no. 2, pp. 98–108, 2025.
- [50] D. Tarani, N. Abdolvand, and S. R. Harandi, "A survey on adoption factors of cloud-based enterprise systems and their differences in iranian smes," *International Journal of Business Information Systems*, vol. 36, no. 2, pp. 165–189, 2021.
- [51] B. Rawat, S. Purnama *et al.*, "Mysql database management system (dbms) on ftp site lapan bandung," *International Journal of Cyber and IT Service Management*, vol. 1, no. 2, pp. 173–179, 2021.