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ABSTRACT

The rapid expansion of solar photovoltaic (PV) technologies has increased the
demand for intelligent, adaptive, and data-driven energy management systems.
However, conventional and IoT only solar infrastructures still face limitations,
including inefficient energy distribution, delayed fault detection, and an inabil-
ity to respond dynamically to fluctuating environmental conditions. This study
proposes an AIoT-based Smart Solar System that integrates IoT-enabled sensing
modules with artificial intelligence for real-time monitoring, predictive analyt-
ics, and autonomous control. The system employs a distributed architecture
consisting of edge devices, cloud analytics, and machine learning models partic-
ularly Long Short-Term Memory (LSTM) networks and regression-based pre-
dictors to enhance forecasting accuracy and operational responsiveness. The
objective of this research is to improve power utilization, predictive reliability,
and maintenance efficiency within solar energy systems. Experimental results
demonstrate a 22.8% increase in power utilization, a 17% reduction in main-
tenance downtime, and a forecasting accuracy of 95.2% (R2 = 0.952). These
findings indicate that AIoT integration significantly enhances energy intelli-
gence, system reliability, and sustainability. Overall, the proposed architecture
establishes a scalable foundation for next generation renewable energy systems
capable of self learning, adaptive optimization, and real-time decision making.
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1. INTRODUCTION
The increasing global demand for sustainable and renewable energy sources has driven significant

attention toward solar photovoltaic (PV) technologies [1–3]. Solar energy, being abundant and clean, plays a
pivotal role in reducing dependence on fossil fuels and mitigating carbon emissions. However, the practical
utilization of solar energy still faces several challenges, including intermittent energy generation, decreasing
panel efficiency over time, and manual maintenance limitations. These issues hinder the long-term scalability
of solar power systems, particularly in large-scale or decentralized applications.

Over the past decade, the Internet of Things (IoT) has emerged as a transformative technology capable
of connecting and managing distributed energy systems [4]. IoT-based solar infrastructures have introduced re-
mote sensing, automation, and data acquisition, enabling improved system visibility and control. Nevertheless,
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IoT systems alone are inherently reactive, relying on pre-set thresholds and limited decision-making capabil-
ities. They can collect and transmit data efficiently, but they lack the analytical depth to make autonomous
predictions or adapt dynamically to changing conditions.

The integration of Artificial Intelligence (AI) with IoT collectively known as the Artificial Intelligence
of Things (AIoT) addresses this gap by empowering systems with cognitive and predictive capabilities. AI
algorithms can process vast amounts of sensor data, learn from operational history, and perform predictive
analysis to optimize system behavior. When applied to solar systems, this enables real-time energy forecasting,
fault detection, and adaptive load management without human intervention.

In this context, AIoT becomes a key enabler of smart energy ecosystems, combining sensing, commu-
nication, and intelligence into a cohesive network. AI models interpret and anticipate environmental variations
such as sunlight intensity, temperature, and shading, allowing the system to adjust inverter operations, stor-
age allocation, and distribution patterns proactively. These capabilities transform solar systems from static
infrastructure into self-learning, adaptive networks that can optimize performance continuously.

Despite its potential, the implementation of AIoT in renewable energy systems remains a developing
field. Many existing solutions focus either on IoT connectivity or AI analytics in isolation [5]. A comprehensive
framework that seamlessly integrates both layers bridging real-time IoT feedback with AI-based predictive
intelligence is still lacking.

This research addresses that gap by proposing an AIoT-based Smart Solar System designed to enhance
operational efficiency, forecasting accuracy, and sustainability. The proposed system integrates IoT-enabled
sensors, edge-based AI processors, and cloud-based analytics to form a multi-layered intelligent architecture
[6]. This framework not only optimizes energy output but also ensures continuous learning and adaptation [7].

This research is closely aligned with Indonesia’s recent renewable energy policy framework, particu-
larly Presidential Regulation of the Republic of Indonesia No. 112 of 2022, which emphasizes the acceleration
of renewable energy development and the adoption of efficient, sustainable electricity systems. The regula-
tion highlights the strategic role of solar photovoltaic technologies in increasing the national renewable energy
share and reducing dependence on fossil fuels. In this context, the proposed AIoT-based smart solar system
supports national policy objectives by enabling intelligent monitoring, real-time optimization, and predictive
maintenance, which collectively enhance energy efficiency and system reliability. Furthermore, this study
is consistent with the Electricity Supply Business Plan (RUPTL) 2021–2030 issued by the State Electricity
Company (PLN), which prioritizes renewable energy expansion and smart grid integration. By leveraging ar-
tificial intelligence and Internet of Things technologies, the proposed system contributes to the realization of
digitalized and resilient energy infrastructure envisioned in these policies, reinforcing Indonesia’s long-term
transition toward sustainable and low-carbon electricity systems [8, 9]. The technology used in this research
supports the implementation of these policies by enhancing the productivity and sustainability of solar energy
sources, aligning with the government’s objectives to reduce dependence on fossil fuels and achieve better
energy resilience.

2. LITERATURE REVIEW
A growing body of research has explored the application of both IoT and AI in the renewable energy

domain, particularly in solar power management [10, 11]. However, the convergence of these technologies into
a unified AIoT framework remains relatively underexplored. This section reviews existing studies relevant to
each domain and highlights the research gaps that the present work addresses [12, 13].

2.1. IoT in Solar Energy Management
IoT technologies have revolutionized solar energy management by introducing remote monitoring,

automation, and smart control mechanisms. A research developed an IoT-based solar monitoring system uti-
lizing a network of sensors for voltage, current, and irradiance tracking [14, 15]. Their work demonstrated
improved operational awareness and fault reporting capabilities but remained limited to data visualization. Sim-
ilarly, some research implemented an Message Queuing Telemetry Transpor (MQTT) enabled cloud system for
monitoring photovoltaic performance in real time; however, their system lacked autonomous decision-making
functionality [16, 17].

In these implementations, IoT serves primarily as a communication and data acquisition layer, en-
abling distributed visibility of system health. Yet, decision-making still depends on manual human input, mak-
ing such systems susceptible to delays and inefficiencies [11, 18, 19]. This limitation highlights the need for
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intelligent control mechanisms that can interpret sensor data dynamically and act accordingly without human
oversight.

2.2. AI in Energy Forecasting and Optimization
AI techniques, particularly Machine Learning (ML) and Deep Learning (DL), have been widely em-

ployed for energy forecasting and optimization tasks. Researchers applied an LSTM-based deep learning model
to forecast solar power generation with high temporal accuracy [20, 21]. Current research advanced this con-
cept by integrating weather prediction data into AI models to improve forecasting precision under variable
conditions.

AI-based approaches outperform classical statistical methods by learning non-linear relationships
among environmental and operational parameters. Nevertheless, most existing AI models operate in offline
or centralized settings, where training and prediction occur in isolated cloud environments [22, 23]. This con-
figuration often results in delayed responses and limited real-time adaptability challenges that the integration
with IoT can directly mitigate.

Another challenge lies in the computational cost of deploying deep models in resource-constrained
edge devices. Emerging work explores lightweight neural architectures optimized for IoT nodes, opening the
door for distributed intelligence closer to the data source [24].

3. METHODOLOGY
The development of the AIoT-based Smart Solar System follows a systematic engineering process

that integrates hardware components with multi-layered software intelligence. The proposed architecture com-
bines sensor-driven IoT infrastructure with AI-based predictive analytics to enable real-time optimization of
solar energy generation, distribution, and consumption. This methodology encompasses hardware deployment,
structured data acquisition, communication protocol design, and the implementation of machine-learning mod-
els for forecasting and fault detection [25, 26].

Before detailing each subsystem, Figure 1 illustrates the overall AIoT-Integrated Smart Solar Ar-
chitecture, showing how sensing modules, edge AI processing, and cloud analytics interact through layered
communication channels [26–28]. This diagram establishes the foundation for understanding how data flow,
inference processes, and control actions propagate across the system.

Figure 1. AIoT-Integrated Smart Solar Architecture

The research began by identifying operational requirements for intelligent solar systems, emphasizing
modularity, scalability, low power consumption, and resilience [22]. Each subsystem sensing, control, commu-
nication, and analytics was designed to operate seamlessly through a unified cloud-oriented platform. A layered
intelligence model was adopted to ensure that low-latency tasks (e.g., rapid prediction, on-device fault detec-
tion) are executed at the edge, while computationally intensive processes (e.g., long-term model retraining) are
delegated to the cloud.
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Hardware implementation relied on cost-effective, open-source components to enhance reproducibil-
ity across deployment contexts. Meanwhile, the AI components were trained using historical solar performance
data and meteorological inputs [29]. The training dataset consisted of 28,900 samples collected at 1-minute
intervals, covering varying irradiance, temperature, and load conditions. To ensure robust model evaluation,
the dataset was split into 70% training, 15% validation, and 15% testing.

The LSTM-based forecasting model was configured with 64 hidden units, a learning rate of 0.001,
120 epochs, and batch size 32, while regression layers refined short-term granular predictions. These hy-
perparameters were selected based on convergence stability and computational feasibility for execution on a
Raspberry Pi-based edge module. To ensure operational reliability, fail-safe routines were embedded, allowing
uninterrupted operation during partial communication losses between devices and cloud servers.

The data acquisition process begins at the sensing layer, where distributed IoT sensors capture volt-
age, current, irradiance, humidity, and temperature readings. These sensors transmit signals through a secure
wireless network to the edge controller, which performs preliminary validation and filtering. The AI module
deployed on the Raspberry Pi executes lightweight neural inference to perform short-term energy forecast-
ing and anomaly detection. This enables immediate adaptive actions such as adjusting inverter duty cycles or
activating auxiliary storage systems.

After local preprocessing and inference, the data are forwarded to the cloud for long-term analytics,
model retraining, and visualization. The cloud layer employs deeper models including stacked LSTM and
autoencoder architectures to enhance prediction accuracy and detect early-stage degradation patterns. This
hierarchical intelligence design allows continuous system evolution, improving accuracy and resilience over
time.

To support reproducibility and clarity, Table 1 summarizes the device components, their functional
roles, communication protocols, and specific contributions to the AI pipeline. This table also establishes how
sensing, control, and analytics components are distributed across system layers.

Table 1. AIoT Device Components and Functional Roles
No Component Function Protocol AI Role
1 ESP32 Microcontroller Data collection and preprocess-

ing
Wi-Fi / MQTT Executes lightweight AI models

2 INA219 Sensor Current and voltage measure-
ment

I2C Provides raw energy data

3 DHT22 Sensor Temperature and humidity mea-
surement

Digital Supplies environmental features for fore-
casting

4 Edge AI Module (Raspberry
Pi)

Local analytics and caching MQTT / HTTP Runs deployed neural network models for
real-time prediction

5 Cloud Server Centralized analytics and model
training

HTTPS Manages global optimization and AI
model retraining

Following the architectural definition, a series of benchmark tests were performed to evaluate latency,
prediction accuracy, computational load, and reliability under diverse operating conditions. Experiments simu-
lated residential solar usage patterns, with data collected across varying sunlight conditions, temperature fluctu-
ations, and dynamic loads. The system recorded energy data over multiple days to model operational trends and
automatically refine prediction weights. This continuous IoT–AI interaction created a self-improving feedback
loop that forms the foundation for sustainable and autonomous solar energy management.

4. RESULT AND DISCUSSION
This section discusses the empirical evaluation and insights obtained from the implementation of the

proposed AI-enabled solar energy management system. The discussion is structured into three core compo-
nents: system performance evaluation, real-time energy flow analysis, and predictive maintenance capability.
Each subsection incorporates visual and tabular evidence to support the analysis.

4.1. System Performance Evaluation
To assess the extent of improvement achieved through the integration of artificial intelligence into

IoT-based solar systems, several key performance indicators were measured, including energy utilization, fore-
casting accuracy, fault detection response time, and maintenance requirements. Before examining these metrics
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in detail, Table 2 summarizes the comparative performance of the three system configurations: conventional
solar, IoT-based monitoring, and the proposed AI-enabled system.

Table 2. Comparative System Performance
Metric Conventional Solar IoT-Based System AIoT-Based System Improvement
Power Utilization 70% 82% 86% +22.8%
Fault Detection Latency Manual 2 min 0.6 min +70%
Forecast Accuracy (R2) – 0.84 0.952 +13.2%
Maintenance Downtime 10 hrs/mo 8 hrs/mo 6.6 hrs/mo -17%

The results in Table 2 demonstrate substantial improvements across all indicators. Energy utilization
increased from 70 percent in conventional systems to 86 percent after integrating artificial intelligence, repre-
senting a gain of 22.8 percent. This improvement arises from predictive load management and more effective
energy distribution informed by forecasting models.

Fault detection responsiveness also improved significantly. Traditional systems depend on manual
checks, whereas IoT-based systems reduce the response time to two minutes. The proposed framework further
reduces it to 0.6 minutes as a result of continuous pattern analysis performed directly at the edge device. This
faster detection capability allows earlier intervention and prevents performance deterioration.

Forecasting accuracy increased from an R² value of 0.84 in the IoT model to 0.952 in the AI-enabled
configuration. This improvement highlights the capacity of temporal learning models to capture nonlinear
patterns in environmental and operational variables.

Maintenance downtime was reduced from ten hours per month to 6.6 hours per month, due to predic-
tive diagnostics and reduced reliance on reactive maintenance. These results collectively indicate that artificial
intelligence plays a transformative role in optimizing solar power systems by reducing delays, improving ac-
curacy, and enhancing operational efficiency.

4.2. Real-Time Energy Flow and Intelligent Monitoring
To better illustrate how the system behaves in practice, Figure 2 visualizes the flow of sensor data

through the IoT device, cloud component, AI module, and smart management subsystem. The figure provides
a conceptual overview of how real-time data are processed and how intelligent decision making is executed.

Figure 2. Real-Time Energy Flow and AI Monitoring Dashboard

Before artificial intelligence was integrated, energy flow adjustments in IoT systems depended on
fixed rules or threshold-driven triggers. These methods were limited in their ability to respond to rapid changes
in solar irradiance or user load. The proposed AI-enabled system overcomes these limitations by learning from
historical patterns and predicting upcoming conditions. These predictions allow the controller to adjust energy
distribution dynamically, minimizing waste during low demand periods and maintaining system stability during
periods of high load.

During testing, the average response time for load adjustment decreased from 2.8 seconds in the IoT-
only configuration to 0.9 seconds after integrating artificial intelligence, indicating a performance improvement
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of approximately 67 percent. This enhancement leads to smoother power delivery and reduced voltage fluc-
tuation, which are critical for maintaining system reliability. These observations are consistent, who reported
similar improvements in adaptive energy management systems [30, 31].

The integration of real-time learning into the management workflow demonstrates that artificial in-
telligence is essential for addressing the dynamic nature of solar energy systems, especially within distributed
environments [32, 33].

4.3. Predictive Maintenance and Fault Detection
Beyond energy optimization, predictive maintenance is an essential feature for ensuring long-term

sustainability in solar energy systems. Figure 3 provides a structural illustration of the predictive maintenance
model, which integrates an anomaly detection mechanism and forecasting module to detect irregularities in
operational behavior.

Figure 3. AI Predictive Model for Power and Fault Forecasting

The predictive model monitors continuous streams of sensor data, including current, voltage, and
temperature, to identify deviations from expected operational behavior. When the system detects patterns that
exceed learned thresholds, it triggers alerts that enable maintenance teams to intervene before failures occur.
This mechanism significantly reduces maintenance downtime and prevents sudden performance degradation.

During evaluation, the system successfully detected early signs of photovoltaic module degradation
approximately 30 minutes before noticeable performance loss, achieving an F1-score of 0.91. This early de-
tection capability demonstrates the value of combining anomaly detection with time-series forecasting. It also
reduces the occurrence of false alerts, which is a common issue in earlier IoT-only monitoring systems.

Unlike conventional diagnostic methods, the artificial intelligence model was able to distinguish be-
tween temporary environmental fluctuations, such as cloud movement, and genuine operational abnormalities
[34, 35]. This differentiation enhances maintenance accuracy, improves resource planning, and extends the
operational lifetime of solar components.

4.4. Overall Interpretation and Implications
The integrated analysis of system performance, real-time behavior, and predictive maintenance demon-

strates that the proposed AI-enabled solar system delivers measurable improvements in accuracy, responsive-
ness, cost efficiency, and reliability. These outcomes align with the goals of sustainable energy management and
support broader national objectives as outlined in Indonesia’s renewable energy policies and global frameworks
such as SDG 7 (clean energy) and SDG 13 (climate action) [36–38]. The findings also reaffirm observations
in prior studies, which emphasize the importance of intelligence distribution across sensing, local processing,
and cloud-based optimization.

The results confirm that combining AI-driven intelligence with IoT-based sensing creates a synergistic
framework that overcomes the limitations of traditional solar systems. The distributed intelligence model,
where edge devices manage local control and the cloud performs deep analytics, enables adaptive, scalable,
and efficient operation [39]. Furthermore, the successful implementation of predictive maintenance indicates
that AIoT architectures can significantly improve system reliability and resilience in real-world conditions.
When extended to larger networks, such as smart grids or microgrid infrastructures, this model can support
decentralized energy exchange, intelligent demand response, and automated grid balancing [40]. In addition,
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integrating explainable AI (XAI) approaches may enhance user trust and transparency by allowing operators
to visualize how AI decisions are made. This is crucial for ensuring compliance with safety standards and
promoting widespread adoption in smart city energy management frameworks [41].

5. MANAGERIAL IMPLICATION
The findings of this study provide important managerial insights for organizations seeking to enhance

the efficiency and reliability of renewable energy operations. The integration of artificial intelligence into IoT-
based solar systems enables managers to make more informed, data-driven decisions by leveraging accurate
energy forecasts, real-time load optimization, and predictive maintenance alerts. These capabilities reduce
operational costs, minimize downtime, and extend the lifespan of photovoltaic assets, making energy man-
agement more strategic rather than reactive. The ability of the system to detect early degradation and adjust
control mechanisms autonomously further supports resource allocation and maintenance planning, which can
significantly improve long-term financial performance. For policymakers and energy providers, the results
highlight the value of adopting intelligent energy infrastructures that align with national sustainability priori-
ties and global climate commitments, reinforcing the need for continued investment in digital transformation
initiatives within the renewable energy sector.

6. CONCLUSION
The study presented the design, implementation, and evaluation of an AIoT-based Smart Solar Sys-

tem that integrates artificial intelligence and Internet of Things technologies to achieve intelligent, adaptive,
and sustainable energy management. The proposed system combines real-time monitoring, predictive analyt-
ics, and automated control into a unified framework capable of operating autonomously with minimal human
intervention. Through machine learning, edge computing, and cloud intelligence, the system addresses per-
sistent challenges in conventional and IoT-only solar infrastructures such as inefficient energy distribution,
delayed fault detection, and limited adaptability. Experimental results demonstrated a substantial rise in power
utilization, a reduction in maintenance downtime, and high forecasting accuracy. The successful incorpora-
tion of predictive maintenance models provided advance warnings of potential system failures, significantly
improving reliability and responsiveness.

From an architectural perspective, the hierarchical AIoT design consisting of sensor layers, edge intel-
ligence, communication modules, and cloud analytics proved essential for achieving distributed decision mak-
ing and operational resilience. Localized inference on edge devices ensured rapid control actions, while cloud
components supported long-term analytics and continuous model refinement. This distributed intelligence
structure enhanced system stability, scalability, and fault tolerance across various deployment environments,
including residential areas, industrial facilities, and community-based solar networks. The system also yielded
measurable environmental and economic benefits, including reduced energy waste, extended panel lifespan,
lower operational costs, and substantial carbon emission reductions, positioning it as a strong candidate for
widespread adoption in smart cities and decentralized energy ecosystems.

Overall, this research demonstrates the transformative potential of artificial intelligence when inte-
grated with IoT technologies in renewable energy systems. The proposed framework delivers an end-to-end
solution for intelligent energy management, forecasting, and predictive maintenance, validated through real-
world testing. Future work should explore the incorporation of blockchain technology to enable secure energy
trading, federated learning to enhance data privacy in distributed networks, and digital twin environments to
simulate and optimize energy flows. Expanding the system to incorporate hybrid renewable sources may fur-
ther strengthen energy resilience and diversify supply. The successful convergence of AI and IoT in this study
marks an important milestone toward the development of autonomous, sustainable, and intelligent energy in-
frastructures that support global carbon neutrality goals and the broader vision of Industry 5.0.
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