Enhancing Waste-to-Energy Conversion Efficiency and Sustainability Through Advanced Artificial Intelligence Integration

Authors

  • Vivi Melinda Muhammadiyah Kuningan College of Health Sciences
  • Tane Williams Pandawan Incorporation
  • James Anderson Pandawan Incorporation
  • J George Davies Eduaward Incorporation
  • Christopher Davis REY Incorporation

DOI:

https://doi.org/10.33050/itee.v2i2.597

Keywords:

Artificial Intelligence, Waste-to-Energy Technology, Energy Conversion Efficiency, Environmental Sustainability, Predictive Maintenance

Abstract

Artificial intelligence (AI) has emerged as a pivotal tool in optimizing waste-to-energy conversion technology, addressing critical environmental issues while promoting sustainable energy sources. This study delves into the multifaceted role of AI in enhancing the efficiency and effectiveness of waste-to-energy processes. By leveraging AI, significant improvements can be achieved in automated waste sorting, process monitoring, and energy production forecasting. The integration of AI into these domains not only streamlines operations but also enhances the accuracy of data management, analysis, and processing. This results in a more efficient conversion of waste into energy, mitigating adverse environmental impacts and fostering sustainable energy practices. The research highlights the practical applications of AI in optimizing the entire waste-to-energy workflow, underscoring its potential to revolutionize this sector. Moreover, the study addresses the inherent challenges and discusses future prospects for AI implementation in waste-to-energy technologies. Through comprehensive analysis and case studies, the findings reveal that AI can significantly contribute to reducing environmental footprints and promoting a circular economy. This exploration provides valuable insights into how AI-driven innovations can lead to more sustainable and efficient waste management and energy production systems, paving the way for future advancements in this critical field.

References

N. Kumari, S. Pandey, A. K. Pandey, and M. Banerjee, “Role of artificial intelligence in municipal solid waste management,” British Journal of Multidisciplinary and Advanced Studies, vol. 4, no. 3, pp. 5–13, 2023.

F. Lanzalonga, R. Marseglia, A. Irace, and P. Pietro Biancone, “The application of artificial intelligence in waste management: understanding the potential of data-driven approaches for the circular economy paradigm,” Management Decision, 2024.

J. Huang and D. D. Koroteev, “Artificial intelligence for planning of energy and waste management,” Sustainable Energy Technologies and Assessments, vol. 47, p. 101426, 2021.

A. B. Jude et al., “An artificial intelligence based predictive approach for smart waste management,” Wirel. Pers. Commun, vol. 123456789, 2021.

D. S. S. Wuisan, R. A. Sunardjo, Q. Aini, N. A. Yusuf, and U. Rahardja, “Integrating Artificial Intelligence in Human Resource Management: A SmartPLS Approach for Entrepreneurial Success,” APTISI Transactions on Technopreneurship, vol. 5, no. 3, pp. 334–345, 2023, doi: 10.34306/att.v5i3.355.

N. J. Sinthiya, T. A. Chowdhury, and A. K. M. B. Haque, “Artificial intelligence based Smart Waste Management—a systematic review,” Computational Intelligence Techniques for Green Smart Cities, pp. 67–92, 2022.

Anggy Giri Prawiyogi and Aang Solahudin Anwar, “Perkembangan Internet of Things (IoT) pada Sektor Energi : Sistematik Literatur Review,” Jurnal MENTARI: Manajemen, Pendidikan dan Teknologi Informasi, vol. 1, no. 2, pp. 187–197, 2023, doi: 10.34306/mentari.v1i2.254.

H. Son, S. W. Beak, and J. W. Park, “Automated Detection of Container-based Audio Forgery Using Mobile Crowdsourcing for Dataset Building,” APTISI Transactions on Technopreneurship, vol. 6, no. 1, pp. 119–135, 2024, doi: 10.34306/att.v6i1.383.

K. Nam et al., “A proactive energy-efficient optimal ventilation system using artificial intelligent techniques under outdoor air quality conditions,” Appl Energy, vol. 266, p. 114893, 2020.

Q. Aini, I. Sembiring, A. Setiawan, I. Setiawan, and U. Rahardja, “Perceived Accuracy and User Behavior: Exploring the Impact of AI-Based Air Quality Detection Application (AIKU),” Indonesian Journal of Applied Research (IJAR), vol. 4, no. 3, pp. 209–218, 2023.

Y. Shino, F. Utami, and S. Sukmaningsih, “Economic Preneur’s Innovative Strategy in Facing the Economic Crisis,” IAIC Transactions on Sustainable Digital Innovation (ITSDI), vol. 5, no. 2, pp. 117–126, 2024, doi: 10.34306/itsdi.v5i2.660.

M. A. Al-Sharafi et al., “Generation Z use of artificial intelligence products and its impact on environmental sustainability: A cross-cultural comparison,” Comput Human Behav, vol. 143, p. 107708, 2023.

C. S. Bangun, S. Purnama, and A. S. Panjaitan, “Analysis of new business opportunities from online informal education mediamorphosis through digital platforms,” International Transactions on Education Technology, vol. 1, no. 1, pp. 42–52, 2022.

U. Rusilowati, N. P. L. Santoso, A. Azmi, S. Maulana, and A. Faturahman, “Analyzing the Financial Implications of Increasing Renewable Energy Penetration in Indonesia’s Power System,” in 2023 11th International Conference on Cyber and IT Service Management (CITSM), IEEE, 2023, pp. 1–4.

A. Rahmania Az Zahra, T. Nurtino, and M. Zaki Firli, “Enhancing Organizational Efficiency Through the Integration of Artificial Intelligence in Management Information Systems,” APTISI Transactions on Management (ATM), vol. 7, no. 3, pp. 282–289, 2023, [Online]. Available: https://ijc.ilearning.co/index.php/ATM/index

Alwiyah, “Technology Integration in Data Analysis using Data Science,” International Transactions on Artificial Intelligence (ITALIC), vol. 1, no. 2, pp. 204–212, 2023, doi: 10.33050/italic.v1i2.300.

A. Fathurrozi, F. Masya, and Sugiyatno, “Implementasi Algoritma Apriori Untuk Prediksi Transaksi Penjualan Produk Pada Aplikasi Point Of Sales,” Technomedia Journal, vol. 8, no. 2, pp. 70–81, 2023, doi: 10.33050/tmj.v8i2.2004.

C. Wang, N. Gao, J. Wang, N. Jia, T. Bi, and K. Martin, “Robust Operation of a Water-Energy Nexus: A Multi-Energy Perspective,” IEEE Trans Sustain Energy, vol. 11, no. 4, pp. 2698–2712, 2020, doi: 10.1109/TSTE.2020.2971259.

U. Rahardja, Q. Aini, and S. Maulana, “Blockchain innovation: Current and future viewpoints for the travel industry,” IAIC Transactions on Sustainable Digital Innovation (ITSDI), vol. 3, no. 1, pp. 8–17, 2021.

H. Wilts, B. R. Garcia, R. G. Garlito, L. S. Gómez, and E. G. Prieto, “Artificial intelligence in the sorting of municipal waste as an enabler of the circular economy,” Resources, vol. 10, no. 4, p. 28, 2021.

I. Ihsanullah, G. Alam, A. Jamal, and F. Shaik, “Recent advances in applications of artificial intelligence in solid waste management: A review,” Chemosphere, vol. 309, p. 136631, 2022.

M. Hardini, R. A. Sunarjo, M. Asfi, M. H. Riza Chakim, and Y. P. Ayu Sanjaya, “Predicting Air Quality Index using Ensemble Machine Learning,” ADI Journal on Recent Innovation (AJRI), vol. 5, no. 1Sp, pp. 78–86, 2023, doi: 10.34306/ajri.v5i1sp.981.

M. Abdallah, M. A. Talib, S. Feroz, Q. Nasir, H. Abdalla, and B. Mahfood, “Artificial intelligence applications in solid waste management: A systematic research review,” Waste Management, vol. 109, pp. 231–246, 2020.

B. Fang et al., “Artificial intelligence for waste management in smart cities: a review,” Environ Chem Lett, vol. 21, no. 4, pp. 1959–1989, 2023.

L. Meria, “Development of Automatic Industrial Waste Detection System for Leather Products using Artificial Intelligence,” International Transactions on Artificial Intelligence (ITALIC), vol. 1, no. 2, pp. 195–204, 2023, doi: 10.33050/italic.v1i2.296.

J. Amann, A. Blasimme, E. Vayena, D. Frey, V. I. Madai, and P. Consortium, “Explainability for artificial intelligence in healthcare: a multidisciplinary perspective,” BMC Med Inform Decis Mak, vol. 20, pp. 1–9, 2020.

I. Rodriguez-Rodriguez, J.-V. Rodriguez, N. Shirvanizadeh, A. Ortiz, and D.-J. Pardo-Quiles, “Applications of artificial intelligence, machine learning, big data and the internet of things to the COVID-19 pandemic: A scientometric review using text mining,” Int J Environ Res Public Health, vol. 18, no. 16, p. 8578, 2021.

C. Lukita, L. D. Bakti, U. Rusilowati, A. Sutarman, and U. Rahardja, “Predictive and Analytics using Data Mining and Machine Learning for Customer Churn Prediction,” Journal of Applied Data Sciences, vol. 4, no. 4, pp. 454–465, 2023.

O. J. Negara, Muhammad Kamil Husain, and Isaac Khong, “Peran Transformasi Teknologi Informasi di Era Industri 4.0 Pada Profesi Akuntansi,” Jurnal MENTARI: Manajemen, Pendidikan dan Teknologi Informasi, vol. 2, no. 1, pp. 84–94, 2023, doi: 10.33050/mentari.v2i1.375.

L. Andeobu, S. Wibowo, and S. Grandhi, “Artificial intelligence applications for sustainable solid waste management practices in Australia: A systematic review,” Science of The Total Environment, vol. 834, p. 155389, 2022.

R. K. Hudiono and S. Watini, “Remote Medical Applications of Artificial Intelligence,” International Transactions on Artificial Intelligence (ITALIC), vol. 1, no. 2, pp. 182–187, 2023, doi: 10.33050/italic.v1i2.292.

Downloads

Published

2024-05-28

How to Cite

Melinda, V., Williams, T., Anderson, J., Davies, J. G., & Davis, C. (2024). Enhancing Waste-to-Energy Conversion Efficiency and Sustainability Through Advanced Artificial Intelligence Integration. International Transactions on Education Technology (ITEE), 2(2), 183–192. https://doi.org/10.33050/itee.v2i2.597